成人一区二区在线_69视频免费看_av成人在线观看_国产一区观看_成人欧美一区二区三区视频网页_国产真实乱偷精品视频免

全國服務(wù)熱線

0917-312584915891077471

鈦合金鍛件·鈦合金棒鈦加工件生產(chǎn)制造商
航空工程用鈦合金薄板鍛件的制備技術(shù)現(xiàn)狀與展望
搜索:
當(dāng)前所在位置:首頁 >> 新聞資訊 >> 行業(yè)資訊

航空工程用鈦合金薄板鍛件的制備技術(shù)現(xiàn)狀與展望

發(fā)布時(shí)間 :2023-09-01 17:36:45 瀏覽次數(shù) :

鈦及鈦合金板、帶、箔材在鈦加工材的生產(chǎn)和應(yīng)用上均占有重要地位[1]。根據(jù)中國有色金屬工業(yè)協(xié)會(huì)的統(tǒng)計(jì)數(shù)據(jù)[2],2021 年度中國鈦加工材的總產(chǎn)量為 135941 t,其中鈦及鈦合金板、帶、箔材的產(chǎn)量為 70130 t,占鈦加工材總產(chǎn)量的 51.6%。鈦板材是指通過平面軋制[3] 獲得厚度≥0.3 mm的片狀產(chǎn)品[4],鈦帶材是指通過平面軋制獲得厚度為 0.1~ 4.76 mm 的卷狀產(chǎn)品[4–5],鈦箔材是指通過冷軋和退火多次循環(huán)得到厚度 < 0.25 mm 的片狀產(chǎn)品[6],以上 3 種產(chǎn)品可以統(tǒng)稱為鈦平面軋制產(chǎn)品。鈦板、帶、箔材主要應(yīng)用于化工、航空航天航海和醫(yī)療3 大板塊[2,7–8]。其中,純鈦帶材主要用于化工行業(yè),純鈦板材用于航空航天航海和醫(yī)療領(lǐng)域,合金板材、箔材主要用于航空航天航海領(lǐng)域。

根據(jù)化學(xué)成分、產(chǎn)品規(guī)格和使用需求的不同,鈦及鈦合金板材的制備技術(shù)有較大區(qū)別。在軋制成形工藝上,鈦板材根據(jù)厚度不同可以分為厚板 (厚度 >4.76 mm)和薄板 (厚度 ≤4.76 mm)[9],通常厚板通過熱軋到成品尺寸,薄板則可以選擇性地通過單片熱軋隨后冷軋到成品尺寸[10],或者包套疊軋到成品尺寸。厚板的軋制過程可以通過控制軋制溫度、軋制方向和變形量調(diào)控組織與性能[11–12]。合金薄板的制備過程采用兩片疊軋和包套軋制[13] 工藝可以提高變形量和軋制效率。此外,采用包套軋制工藝可以制備變形抗力較大和裂紋敏感性較高的合金薄板[14]。在軋制裝備上,國內(nèi)外主流的板材熱軋?jiān)O(shè)備為兩輥、三輥、四輥、八輥熱軋機(jī),熱軋機(jī)寬度在 1200 ~ 4060 mm;主流的板材冷軋?jiān)O(shè)備為四輥、八輥可逆式冷軋機(jī),冷軋機(jī)寬度在 1200 ~ 1780 mm。國內(nèi)外主流的帶材熱軋?jiān)O(shè)備為多機(jī)架熱連軋機(jī)組,冷軋?jiān)O(shè)備為二十輥Sendzimir 冷軋機(jī)。達(dá)到成品尺寸的板材經(jīng)熱處理、板型處理和表面處理后則完成產(chǎn)品制備。

鈦合金板

隨著全球工業(yè)用鈦需求量的增加[15],以及鈦材在航空、航天、海洋、船舶領(lǐng)域的推廣[16–18],鈦板材類產(chǎn)品的產(chǎn)量與性能需求不斷提升,促進(jìn)了板材類新產(chǎn)品的開發(fā)和鈦板、帶、箔材制備技術(shù)發(fā)展。首先,以高溫鈦合金為例,自 20 世紀(jì) 50 年代發(fā)展至今,鈦合金板材產(chǎn)品的服役溫度逐漸由 300 ℃提升到 650 ℃,使用部位也逐漸由飛機(jī)蒙皮表面升級(jí)到關(guān)鍵核心承力部件,如圖 1 所示。1950 —1960 年 設(shè) 計(jì) 了 OT4 – 1(TC1)、OT4(TC2)、Ti–6Al–4V(TC4)、BT6 等在 200 ~ 400 ℃使用的鈦合金,其薄板類產(chǎn)品大量應(yīng)用于飛機(jī)薄壁鈑金零件[19],Ti–6Al–4V 合金厚板和薄板也被應(yīng)用于航空發(fā)動(dòng)機(jī)寬弦空心風(fēng)扇葉片制造[20–21]。1960 —1970 年設(shè)計(jì) 了 BT20(TA15)、Ti6242、Ti6246 (TC19)等在 400 ~ 500 ℃使用的鈦合金,BT20(TA15)合金厚板產(chǎn)品通過機(jī)械加工應(yīng)用于大型飛機(jī)結(jié)構(gòu)件制備[22–24],而其薄板也廣泛用于超塑成形帶筋結(jié)構(gòu)件[25–26]。Ti6242 合金板材、鍛件應(yīng)用于航空發(fā)動(dòng)機(jī)中低溫壓氣機(jī)盤、葉片和葉輪,服役溫度可達(dá) 500 ℃[27–28]。1970 —1990 年 設(shè) 計(jì)了 Ti6242S(TA19)、IMI834、Ti1100等在 520 ~ 600 ℃使用的鈦合金[29–30],IMI834 合金厚板、鍛件應(yīng)用于航空發(fā)動(dòng)機(jī)中高溫壓氣機(jī)機(jī)盤、葉片和葉 輪,服 役 溫 度 可 達(dá) 550 ℃[31–32]。

1692067355993619.jpg

Ti1100 合金板材用于航空發(fā)動(dòng)機(jī)環(huán)形燃燒室筒體和高壓壓氣機(jī)葉片和盤件,服役溫度可達(dá) 600 ℃[33–34]。1990年至今國內(nèi)設(shè)計(jì)了 Ti55(TA32)、Ti60(TA33)、Ti65 等在 550~650 ℃使用的鈦合金[35–37],Ti55(TA32)合金厚度板材、鍛件用于國內(nèi)航空發(fā)動(dòng)機(jī)燃燒室筒體和巡航導(dǎo)彈彈體結(jié)構(gòu)研制,服役溫度可達(dá) 550 ℃[38]。Ti60(TA33) 合金厚板用于航空發(fā)動(dòng)機(jī)葉片、盤、鼓筒等高溫部件,服役溫度可達(dá) 600℃[39]。Ti65 合金薄板用于超音速飛機(jī)蜂窩結(jié)構(gòu)和壁板,服役溫度可達(dá)650 ℃[40]。此外,高強(qiáng)高韌鈦合金板材類產(chǎn)品也被廣泛應(yīng)用于航空和海洋 工 程 (圖 1),Ti15333(TB5)合金薄板抗拉強(qiáng)度和延伸率可達(dá) 1375MPa 和 5%[41],成形后應(yīng)用于大型運(yùn)輸機(jī)管路和冷成形鈑金零件[42–43]。Ti5553 合金強(qiáng)度可達(dá) 1517 MPa[44],用于飛機(jī)起落架。Ti62A 合金板材強(qiáng)度和斷裂韌性可達(dá) 1134 MPa 和72.79 MPa·m1/2[45],這種高強(qiáng)高韌損傷容限型鈦合金板材應(yīng)用于深海載人潛水器[46–47]。最后,船用鈦合金板材類產(chǎn)品的應(yīng)用也呈現(xiàn)逐年增加趨勢。以 TA5、Ti70(TA23)、Ti75(TA24)和 Ti80(TA31)為代表的船用鈦合 金在船體上應(yīng)用的加工材類型主要為板材,包括桅桿[48]、導(dǎo)流罩[49]、耐壓氣瓶[50] 和殼體[16] 等結(jié)構(gòu)部件,如圖 1 所示。整體而言,鈦合金板材類產(chǎn)品應(yīng)用十分廣泛,除了以上列舉的航空、航天、海洋、船舶領(lǐng)域,在兵器、裝甲[51–52]、化工[53]、醫(yī)療器械[54]、汽車[55] 等行業(yè)均應(yīng)用廣泛。鈦合金板材制備技術(shù)則根據(jù)不同的使用需求,在外觀、顯微組織和性能上有不同的控制方法和技術(shù)要點(diǎn)。

1、 鈦合金板材制備技術(shù)概況

鈦合金板材制備是一個(gè)通過冶金和物理方法得到滿足目標(biāo)需求幾何外形和力學(xué)性能板材的過程。板材幾何外形控制是基本的制備要求,包括厚度、寬度、長度、翹曲度、表面質(zhì)量等。 板材的力學(xué)性能取決于合金元素的添加和熱機(jī)械過程 (軋制、熱處理),通過合金化和熱機(jī)械過程調(diào)控組織形貌、第二相類型、相比例和織構(gòu)類型,以實(shí)現(xiàn)對力學(xué)性能的定量調(diào)控。

根據(jù)鈦合金板材的厚度、β 相穩(wěn)定系數(shù) Kβ 和熱變形特性,其軋制工藝可以分為單相區(qū)熱軋、兩相區(qū)熱軋、冷軋及三者的組合工藝,配合相應(yīng)的熱處理工藝可制備不同厚度和 多種組織狀態(tài)的板材 (圖 2)。在厚度控制上,厚板制備過程通常是在相變點(diǎn)附近軋制,通過 1 ~ 3 個(gè)火次直接熱軋至成品厚度;薄板制備過程通常采用熱軋至中間厚度,冷軋到成品厚度,再結(jié)晶退火后達(dá)到交貨狀態(tài);難變形高合金化薄板通常采用包套疊軋 (熱軋)至成品厚度。在組織控制上,通過對軋制火次、軋制溫度、變形量、熱處理溫度等工藝參數(shù)調(diào)整,可以實(shí)現(xiàn)對組織形貌的控制,如圖 2 所示。組織形貌決定了板材的力學(xué)性能,通常認(rèn)為全片層組織[56]具有良好的韌性、較高的蠕變強(qiáng)度和較低的裂紋擴(kuò)展速率,雙態(tài)組織[57]具有較高的疲勞壽命和良好的強(qiáng)塑性匹配,等軸組織[58] 具有較高的抗拉強(qiáng)度、良好的塑性和優(yōu)異的超塑性。

1692067370434982.jpg

2、 鈦合金薄板制備技術(shù)現(xiàn)狀及問題

受熱軋機(jī)厚度控制精度和軋制力的限制,鈦合金薄板的成品加工過程通常采用冷軋和包套疊軋制備技術(shù)。

2.1 冷軋鈦合金薄板

由于常溫下近 α 鈦合金和 α + β兩相鈦合金主要為 α 相,而 β 和近β 鈦合金主要為 β 相,相種類和相結(jié)構(gòu)不同使不同鈦合金的塑性加工能力和板材成形方式不同。圖 3 為鈦合金板材冷軋加工硬化曲線,可知不同類型鈦合金的冷軋加工能力有較大差異,整體上隨著合金化程度的提高,板材抗拉強(qiáng)度 (Rm)越高,延伸率 (A5)越低加工硬化過程越明顯。純鈦和 β 合金的塑性成形能力有顯著優(yōu)勢,冷軋變形量可達(dá) 80% 左右。

1692067383816392.jpg

受合金化的影響,TA5 近 α 合金和TC6 兩相合金冷成形能力較差,極限變形量分別為 26.5% 和 31.0%,超過極限變形量后板材表面和邊部開始形成微裂紋。通過冷軋制備鈦合金 薄板主要分為兩個(gè)步驟:第 1 步熱軋至中間厚度;第 2 步冷軋加工板材至成品厚度。冷軋制備的鈦合金板材,其表面質(zhì)量、板材不平度、厚度精度等可以得到良好控制,因此冷軋制備技術(shù)在鈦及鈦合金薄板制備過程中得到廣泛應(yīng)用。

2.1.1 α 鈦合金及 α + β 兩相鈦合金

圖 4 為 α 鈦合金和 α + β 兩相鈦合金通過冷軋制備技術(shù)加工薄板的工藝流程和組織演變情況。通常 α 鈦合金和 α + β 兩相鈦合金冷軋薄板加工工藝如圖 4(a)所示,此工藝在 TA10、TA18、TC1、TC2、TC4 等[59–61] 鈦合金薄板制備過程中均有應(yīng)用。鈦合金鍛坯經(jīng)過單相區(qū)Ⅱ軋制,可以降低變形抗力,充分破碎鍛坯的粗晶組織,并且提高軋制效率。Ⅲ均一化過程為加熱至單相區(qū)然后快速冷卻,主要是均勻化變形組織并且弱化形變織構(gòu),控制冷卻速率可以實(shí)現(xiàn)對 α片層尺寸的控制(冷卻越快越細(xì)小)和晶界 α 析出量的控制 (冷卻越快越不易析出)。Ⅳ兩相區(qū)熱軋至中間厚度 (一般是熱軋極限厚度),然后通過中間退火獲得充分軟化的再結(jié)晶等軸組織,為冷軋?zhí)峁┙M織和性能條件。需要說明的是,隨著熱軋機(jī)組精度的提高,僅通過Ⅳ熱軋過程也可制備出較薄板材。α 鈦合金、α + β 兩相鈦合金經(jīng)過Ⅴ中間退火后,室溫下主要為 α 相。Ⅵ冷軋變形過程主要是 α 相的變形過程,此過程主要通過控制板材的道次變形量和火次變形量,最終獲得目標(biāo)尺寸和性能的板材。不同鈦合金板材的最優(yōu)冷軋變形量是不同的,可通過繪制冷軋加工硬化曲線獲得

(圖 3),一般最優(yōu)冷軋變形量為極限變形量 (表面出現(xiàn)微裂紋時(shí)的變形量)的 60% ~ 80%,如 TC4 合 金 優(yōu)化的冷軋火次變形量為 26.3%[62],TC6 合金優(yōu)化的冷軋火次變形量為25% ~ 27%[63]。合理的冷軋變形量既有利于冷軋高效加工,又可在成品退火后得到均勻的再結(jié)晶組織。

α 鈦合金和 α + β 兩相鈦合金在室溫下主要由 α 相構(gòu)成 (體積分?jǐn)?shù)> 90%),因此這兩類合金板材冷軋變形過程有相似的變形特征,如 TA1 與TC4 板材,室溫變形主要表現(xiàn)為 α 晶粒的滑移變形和轉(zhuǎn)動(dòng),晶粒拉長、破碎,形成冷軋變形組織。圖 4(b)~(d)為典型的全 α 相純鈦板材經(jīng)中間退火后冷軋過程的組織演變、位相差演變和織構(gòu)演變[64]。隨著軋制變形量由 10% 增加至 40%,顯微組織沿軋制方向逐漸拉長,球狀組織充分破碎,形成大角度晶界 (圖 4(b)[64]);小角度晶 (LAGB)界由 8.4% 增加至 66.1%,說明變形過程位錯(cuò)纏結(jié)塞積程度增加(圖 4(c)[64]);軋制過程板材形成雙峰基面織構(gòu)和基面織構(gòu) (圖 4(d)[64])。

1692067401795342.jpg

對冷軋板材進(jìn)行Ⅶ再結(jié)晶退火后顯微組織演變主要包括再結(jié)晶過程和第二相的析出,形成再結(jié)晶織構(gòu)和相變織構(gòu)。以近 α 鈦合金 Ti65 合金(相變點(diǎn) 1035 ℃)板材為例,通過 對軋制狀態(tài) 2.0 mm 板材控制熱處理溫度獲得等軸和雙態(tài)兩種組織狀態(tài)的板材 (圖 5)。對 Ti65 合金板材進(jìn)行 800 ℃/30 min 和 990 ℃/30 min熱處理后,軋制變形態(tài)長條 α 組織迅速減少,得到細(xì)小的等軸組織 (圖5(a)和(b)),隨著溫度升高,沿初生 α 相 αp 晶界處析出次生 α 相 αs 片層,αp 晶界清晰,晶粒尺寸增加 (圖5(b))。經(jīng)兩相區(qū)高溫 (1020 ℃/30min AC + 700 ℃/4 h AC )熱處理后形成雙態(tài)組織 (圖 5(c)),主要表現(xiàn)為 αp 含量不同,圖 5(a)~(c)中 αp體積分?jǐn)?shù)分別為 90%、70% 和 30%,隨著熱處理溫度提高 αp 減少,αs 增加,最終形成雙態(tài)組織。兩相區(qū)熱處理過程板材織構(gòu)種類保持不變,包括Ⅰ織構(gòu) (1-21-0)[101-0] 織構(gòu),(1-21-0)面 // 軋制面,[101-0]// 軋向和Ⅲ織構(gòu)為 (011-3)// 軋面的纖維織構(gòu)。織構(gòu)強(qiáng)度隨著熱處理溫度逐漸演變,高溫固溶時(shí)效板材的織構(gòu)強(qiáng)度明顯增加。

1692067413640679.jpg

2.1.2 近 β 鈦合金

圖 6 所示為近 β 兩相鈦合金通過冷軋制備技術(shù)加工薄板的工藝流程和組織演變。通常 β 鈦合金和近β 鈦合金冷軋薄板的加工工藝如圖 6(a)所示,此工藝在 TB5、TB6、TB8、 TB15 等[64–66] 鈦合金薄板制備過程中均有應(yīng)用。與 α 鈦合金和 α + β 兩相鈦合金冷軋薄板的加工工藝 (圖 4(a))的主要區(qū)別在于熱軋過程無均一化處理和中間退火采用單相區(qū)固溶退火。近 β 鈦合金相變點(diǎn)較低,兩相區(qū)軋制溫度較低,變形抗力較大,不利于板型和表面質(zhì)量控制。因此,通常熱軋過程Ⅱ選擇單相區(qū)或相變點(diǎn)附近軋制,降低變形抗力,提高軋制效率。Ⅲ單相區(qū)固溶處理的主要原因在于避免低溫?zé)崽幚砝鋮s過程時(shí)效強(qiáng)化,軟化板材,為冷軋階段提供組織和性能基礎(chǔ)[67]。近 β 鈦合金和 β 鈦合金經(jīng)過Ⅴ固溶退火后,室溫下主要為 β 相(BCC 結(jié)構(gòu)),室溫下塑性良好,因此根據(jù)制備板材的厚度情況,通過Ⅲ固溶和Ⅳ冷軋工序多次反復(fù)循環(huán),可實(shí)現(xiàn)較薄板材的制備[68]。

1692068787423661.jpg

β 鈦合金固溶處理后在室溫下主要由 β 相構(gòu)成 (殘余少量 α 相),因此這類合金板材冷軋變形過程有相似的變形特征,如 TB5 合金和Ti–23Nb–0.7Ta–2Zr 合 金[69] 薄 板, 主要表現(xiàn)為 β 晶粒的滑移變形,晶粒拉長、破碎,形成冷軋變形組織。典型的 β 鈦合金 (Ti–14.23%V–3.62%Al–3.74%Sn–2.67%Cr–0.43%Si,質(zhì)量分?jǐn)?shù))不同冷軋變形量和再結(jié)晶退火后的顯微組織,如圖 6(b)和(c)所示[64],隨著變形量的增加形成大量滑移帶和應(yīng)變局部化現(xiàn)象加劇,再結(jié)晶退火后獲得均勻的等軸組織。近 β 鈦合金(Ti–3.5Al–5Mo–6V–3Cr–2Sn–0.5Fe,質(zhì)量分?jǐn)?shù))軋制和退火過程的織構(gòu)演變,如圖 6(e)~(h)所示[68],冷軋和退火過程形成 γ 纖維織構(gòu) (<111>晶向 // 軋面法向)。由于 β 鈦合金優(yōu)良的冷加工性能,可以實(shí)現(xiàn)超大冷軋變形和交叉軋制,如 TB8(β21S)亞穩(wěn) β 鈦合金冷軋加工變形量可達(dá)到80% 以上 (圖 3)。通常 β 鈦合金和近 β 鈦合金冷軋變形量須達(dá)到 50%以上才能充分變形獲得均勻的軋制組織[70]。

2.1.3 冷軋制備技術(shù)現(xiàn)存問題

冷軋鈦合金薄板受到軋制變形量、軋制方向的限制,通過冷軋制備技術(shù)加工的鈦合金薄板易出現(xiàn)以下問題。

(1)加工效率低。以 TC4 為例,從 2.8 mm 冷軋至 1.0 mm,根據(jù)圖 2給出的 TC4 最優(yōu)加工率 (20% ~ 25%)計(jì)算,需要 4 個(gè)軋程,中間需要進(jìn)行 3次退火和表面處理,效率低、資源浪費(fèi)大。通過熱軋疊軋技術(shù)[71]、包套疊軋技術(shù)[72] 或卷帶式生產(chǎn)[73] 可以提高加工效率。

(2)板材組織不均勻。HCP 結(jié)構(gòu) α 相具有 12 種滑移系,少于 BCC結(jié)構(gòu) β 相的 48 種滑移系[74],而室溫下 α 鈦合金和 α + β 鈦合金大部分為α 相,HCP 結(jié)構(gòu)限制了鈦合金塑性變形能力和加工率。導(dǎo)致板材心部區(qū)域無法充分變形,出現(xiàn)組織不均勻現(xiàn)象。圖 7(a)為 TC4 板材經(jīng) 18.1%冷軋變形后的顯微組織,紅框中區(qū)域不充分變形,最終導(dǎo)致退火后組織粗大且不均勻,影響板材的超塑成形過程[62]。增大冷軋變形量和合理地提高熱處理溫度可以改善此類問題。

1692068797714989.jpg

(3)板材翹曲度問題。現(xiàn)有產(chǎn)品對翹曲度的要求最高 <1.2%(TB5 合金薄板),而通過冷軋制備技術(shù)加工的鈦合金薄板,翹曲度可達(dá) 1.5% ~3%,如圖 7(b)所示。翹曲度不達(dá)標(biāo)會(huì)導(dǎo)致自動(dòng)焊接焊縫不對中、冷熱成形不均勻。帶張力軋制[75]、液壓彎輥[76]、彎曲矯直[77] 和蠕變退火[78] 技術(shù)的應(yīng)用可以有效改善薄板的板型問題,降低板材的翹曲度。

(4)板材易形成微區(qū)織構(gòu)。由于熱軋過程變形量和軋制溫度的不良匹配,片層 α 取向球化過程形成取向近似一致的晶粒聚集區(qū)域,后續(xù)常規(guī)冷軋變形和退火過程無法徹底消除此類微觀區(qū)域,此類大尺寸、多晶粒取向一致的區(qū)域稱為微區(qū)織構(gòu)(Macro-zone,MZ)[79–80]。 圖 7(c)和 (d)為 35% 冷軋變形后 750 ℃/30min 退 火 的 1.0 mm 厚 TC1 合 金 板材的顯微組織和再結(jié)晶分布圖。從圖 7(c)中可以看出 MZ 區(qū)呈現(xiàn)黑色條帶狀分布于顯微組織中,MZ 區(qū)內(nèi)部為小角度晶界聚集的未再結(jié)晶、細(xì)晶區(qū)域。MZ 區(qū)內(nèi)的細(xì)晶呈現(xiàn)出相似取向,如圖 7(d)所示。MZ 區(qū)在外力作用下易產(chǎn)生應(yīng)力集中,會(huì)顯著降低板材的疲勞性能[81]。通過熱軋半成品板材組織優(yōu)化或增大冷軋累積變形量可以消除此類 MZ 區(qū)。

2.2 包套疊軋鈦合金薄板

2.2.1 制備工藝

包套疊軋制備鈦合金薄板通常分兩步進(jìn)行[71]。第 1 步是將板材換向軋制到中間厚度,大約是最終軋制厚度的 3 ~ 4 倍;第 2 步是將鈦板以類似三明治的方式疊放裝配在鋼套中,加熱軋制到所需的成品尺寸。換向軋制是為了使軋制板材的縱向和橫向性能均勻。

圖 8 所示[82] 為通過包套疊軋制備技術(shù)加工鈦合金薄板的加工工藝和組織演變。鈦合金薄板的包套疊軋制備工藝如圖 8(a)所示,通常高合金化的近 α 鈦合金和 α + β 兩相鈦合金薄板用此方法制備,如 TA15、TA32、Ti65合金[83–84,40]。包套疊軋前的加工工藝與冷軋薄板制備工藝相似,鈦合金鍛坯經(jīng)過單相區(qū)軋制Ⅱ,單相區(qū)均一化處理Ⅲ后快速冷卻,兩相區(qū)熱軋至中間厚度Ⅳ (一般是成品厚度的 3 ~ 4倍),然后進(jìn)行包套疊軋Ⅴ。主要是將多層疊放的鈦板用鋼套包套 (圖 8(b)),進(jìn)行整體加熱和軋制。最后進(jìn)行熱處理和表面處理得到成品板材。

1692068807914462.jpg

包套疊軋技術(shù)的關(guān)鍵控制要點(diǎn)在于軋制溫度、疊軋片數(shù)、板型和厚度均勻性。圖 8(c)是用包套疊軋技術(shù)制備 1.0 mm 厚 TC4 板材的顯微組織,等軸組織均勻細(xì)小,平均晶粒尺寸為3.9 μm,包套疊軋工藝的火次變形量遠(yuǎn)大于單片冷軋工藝,因此更容易獲得細(xì)小均勻的顯微組織。此外,包套疊軋工藝可以實(shí)現(xiàn)多次換向軋制,有利于獲得對稱性較好的基面織構(gòu),如圖 8(d)所示,此類織構(gòu)板材力學(xué)性能各向異性較小,有利于塑性成形和深加工應(yīng)用。

2.2.2 包套疊軋制備技術(shù)現(xiàn)存問題

包套疊軋軋制技術(shù)的包套鋼套可以實(shí)現(xiàn)保溫軋制,對制備難變形鈦合金、冷軋加工性差的鈦合金板材,實(shí)用性很高。此外,包套疊軋軋制技術(shù)可以增加軋制厚度,實(shí)現(xiàn)熱軋可控 軋制薄板;提高軋制效率,熱軋減小抗力,縮短薄板制備周期;實(shí)現(xiàn)多次換向軋制,控制板材織構(gòu);保溫效果良好,可實(shí)現(xiàn)大變形,制備細(xì)晶板材。主要的工藝難點(diǎn)是多工序、流程復(fù)雜、過程控制難度大。通過包套疊軋制備技術(shù)加工鈦合金薄板出現(xiàn)的主要問題包括 3 點(diǎn),如圖 9 所示。

1692068816147445.jpg

(1)板材殘余應(yīng)力較大。包套疊軋制備技術(shù)加工鈦合金薄板火次變形量大,且軋制后板材表面處理工序復(fù)雜,軋制和表面處理 (磨削、砂光)過程均會(huì)引入殘余應(yīng)力,致使板材殘余應(yīng)力增大。如包套疊軋制備的 TC4 薄板 (2.0 mm 厚度)沿厚度方向從板材表面至心部的殘余應(yīng)力分布,如圖 9(a)紅色曲線所示,板材殘余應(yīng)力較大,在 –101~ –4 MPa 之間。較大的板材殘余應(yīng)力不利于應(yīng)用過程薄板的冷、熱成形。通過再結(jié)晶熱處理與真空蠕變處理結(jié)合的方法可以顯著降低板材殘余應(yīng)力,處理后板材殘余應(yīng)力降低至 –18~27 MPa,如圖 9(a)藍(lán)色實(shí)線所示。

(2)晶界 α 長條組織遺傳。晶界長條 α 拉長、扭曲或斷續(xù)的現(xiàn)象在TC4、TA32、Ti65、SP700 等 包 套 疊軋制備的鈦合金薄板中均時(shí)有出現(xiàn)。主要是由于Ⅲ均一化過程 (圖 8(a))冷速控制不當(dāng),冷速過慢會(huì)導(dǎo)致晶界α 沿原始 β 晶界大量析出并粗化,如圖 9(b)所示,SP700 板材的均一化組織。長條晶界 α 組織一旦形成,在熱軋過程很難徹底消除,即使累積變形量達(dá)到 90%,也只會(huì)扭著、彎曲或斷裂,最終形成圖 9(c)所示的異常組織,影響 SP700 材料的超塑成形性能。通過嚴(yán)格控制Ⅲ均一化過程的冷速避免晶界 α 相形成,或降低溫度增大變形量軋制均可消除鈦合金薄板的長條 α 異常組織。

(3)薄板力學(xué)性能各向異性問題突出。包套疊軋制備技術(shù)工藝設(shè)計(jì)時(shí),由于軋制變形量和軋制方向設(shè)計(jì)不合理,易形成強(qiáng)橫向織構(gòu)或者雙峰基面織構(gòu),導(dǎo)致沿板材不同方向的 力學(xué)性能產(chǎn)生差異,影響板材的深加工和服役性能。這種各向異性問題在 TA32、TA15、TC4、Ti65 等合金薄板中常見,如圖 9(d)[40] 為強(qiáng)橫向織構(gòu)的 Ti65 合金薄板沿 TD 和 RD方向高溫蠕變性能的位移 – 時(shí)間曲線,可以看出 TD 方向的高溫蠕變持續(xù)時(shí)間約為 RD 方向的 3 倍。此外,強(qiáng)織構(gòu)作用下 Ti65 合金板材沿 TD和 RD 方向的蠕變變形機(jī)理不同,沿TD 方向的蠕變變形受晶界滑移和擴(kuò)散控制,沿 RD 方向的蠕變變形受位錯(cuò)滑移控制。通過控制軋制方向和優(yōu)化換向軋制前后變形量比可以有效地改善板材各向異性問題。

3 、結(jié)論

整體而言,鈦及鈦合金薄板的軋制制備技術(shù)在過去幾十年間形成了較為完整的體系,通過冷軋和包套疊軋制備技術(shù)可實(shí)現(xiàn)鈦合金國標(biāo)牌號(hào)的大部分產(chǎn)品生產(chǎn)制備,國內(nèi)基本實(shí) 現(xiàn)了鈦合金薄板自給自足、自主可控。但在高品質(zhì)鈦合金薄板制備技術(shù)上進(jìn)展緩慢,高合金化板材加工效率低、高性能板材外觀精度不良和各向異性較大、宇航級(jí)板材批次穩(wěn)定性 不良等問題依舊存在。另外,鈦合金薄板自動(dòng)化制備技術(shù)發(fā)展緩慢。軋制裝備、控制方式發(fā)展緩慢,制備過程人工干預(yù)較多、自動(dòng)化程度偏低,導(dǎo)致板材產(chǎn)品的生產(chǎn)效率低,人工成本高,板材組織性能的均勻性、批次穩(wěn)定性不易控制。

關(guān)于鈦合金板材制備技術(shù)的精細(xì)化控制和自動(dòng)化研究工作從未停止。未來鈦合金薄板制備過程的標(biāo)準(zhǔn)化作業(yè)、控軋控冷技術(shù)應(yīng)用、低成本鈦合金和高性能鈦合金薄板制備技術(shù)開發(fā)將成為鈦合金薄板加工行業(yè)的重點(diǎn)工作。

參 考 文 獻(xiàn)

[1] LüTJERING G, WILLIAMS J C.Titanium[M]. 2nd ed. Berlin: Springer, 2007.

[2] 王向東 , 逯福生 , 賈翃 , 等 . 2020 年中國鈦工業(yè)發(fā)展報(bào)告 [J]. 鈦工業(yè)進(jìn)展 , 2021,38(2): 34–41.

WANG Xiangdong, LU Fusheng, JIA Hong,et al. Report on China titanium industry progress in2020[J]. Titanium Industry Progress, 2021, 38(2):34–41.

[3]VLADIMIR B, BALLAS G R.Fundamentals of flat rolling manufacturingengineering and materials processing[M]. BocaRaton: CRC Press, 2000: 439–460.

[4]國防工業(yè)技術(shù)委員會(huì) . 航空用鈦及鈦合金板、帶材規(guī)范 : GJB 2505—95[S/OL].1995–10–16 [2022–12–11]. https://www.renrendoc.com/p-20311065.html.

National Defense Industry TechnicalCommittee. Specification for titanium and titaniumalloy plate, sheet and strip for aircraft: GJB 2505—95[S/OL].1995–10–16[2022–12–11]. https://www.renrendoc.com/p-20311065.html.

[5] 國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局 , 中國國家標(biāo)準(zhǔn)化管理委員會(huì). 鈦及鈦合金帶、箔材:GB/T 3622—2012[S]. 北京 : 中國標(biāo)準(zhǔn)出版社 ,2013.

General Administration of QualitySupervision, Inspection and Quarantine, ChinaNational Standardization Administration.Titanium and titanium alloy strip and foil: GB/T3622—2012[S]. Beijing: China Standards Press,2013.

[6]FROES F H. Titanium: Physicalmetallurgy, processing, and applications[M].Materials Park: ASM International, 2015

[7] 王向東 , 逯福生 , 賈翃 , 等 . 2019 年中國鈦工業(yè)發(fā)展報(bào)告 [J]. 鈦工業(yè)進(jìn)展 , 2020,37(3): 1–7.

WANG Xiangdong, LU Fusheng, JIAHong, et al. Report on China titanium industryprogress in 2019[J]. Titanium Industry Progress,2020, 37(3): 1–7.

[8] 王向東 , 逯福生 , 賈翃 , 等 . 2018 年中國鈦工業(yè)發(fā)展報(bào)告 [J]. 鈦工業(yè)進(jìn)展 , 2019,36(3): 158–163.

WANG Xiangdong, LU Fusheng, JIAHong, et al. Report on China titanium industryprogress in 2018[J]. Titanium Industry Progress,2019, 36(3): 158–163.

[9]GRONOSTAJSKI Z, PATER Z,MADEJ L. Recent development trends in metalforming[J]. Archives of Civil and MechanicalEngineering, 2019, 19(3): 898–941.

[10] GHOSH A. Anisotropic tensile andratcheting behavior of commercially pure titaniumprocessed via cross rolling and annealing[J].International Journal of Fatigue, 2019, 120: 12–22.

[11]SALEM A A, GLAVICIC M G,SEMIATIN S L. The effect of preheat temperatureand inter-pass reheating on microstructure andtexture evolution during hot rolling of Ti–6Al–4V[J]. Materials Science and Engineering: A,2008, 496(1–2): 169–176.

[12] PREMKUMAR M, HIMABINDUV S, BANUMATHY S, et al. Effect of mode ofdeformation by rolling on texture evolutionand yield locus anisotropy in a multifunctionalβ titanium alloy[J]. Materials Science andEngineering: A, 2012, 552: 15–23.

[13] 戴毅 , 羅偉 , 李信 . TA15 鈦合金薄板疊軋工藝研究 [J]. 熱加工工藝 , 2018, 47(15):151–152, 156.

DAI Yi, LUO Wei, LI Xin. Study onsuperimposed rolling process of TA15 titaniumalloy sheet[J]. Hot Working Technology, 2018,47(15): 151–152, 156.

[14]SEMIATIN S L, SMITH P R.Microstructural evolution during rolling ofTi–22Al–23Nb sheet[J]. Materials Science andEngineering: A, 1995, 202(1–2): 26–35.

[15] SIM K H, WANG G F, KIM T J.Status of titanium alloy industry for aviation inthe world and development strategy of Chineseenterprises[J]. DEStech Transactions on SocialScience, Education and Human Science, 2019(emse): 177–181.

[16]趙永慶 . 我國創(chuàng)新研制的主要船用鈦合金及其應(yīng)用 [J]. 中國材料進(jìn)展 , 2014,33(7): 398–404.

ZHAO Yongqing. The new main titaniumalloys used for shipbuilding developed in Chinaand their applications[J]. Materials China, 2014,33(7): 398–404.

[17] CAO C. One generation of materialtechnology, one generation of large aircraft[J].Acta Aeronautica et Astronautica Sinica, 2007,29(3): 701–706.

[18] WANG K H, WANG L L, ZHENGK L, et al. High-efficiency forming processes forcomplex thin-walled titanium alloys components:State-of-the-art and perspectives[J]. InternationalJournal of Extreme Manufacturing, 2020, 2(3):032001.

[19] BOYER R R. An overview on the useof titanium in the aerospace industry[J]. MaterialsScience and Engineering: A, 1996, 213(1–2):103–114.

[20] 吳心晨 , 陳明和 , 謝蘭生 , 等 . 復(fù)雜外形航空發(fā)動(dòng)機(jī) TC4 鈦合金寬弦空心風(fēng)扇葉片彎扭成形 [J]. 航空學(xué)報(bào) , 2015, 36(6):2055–2063.

WU Xinchen, CHEN Minghe, XIELansheng, et al. Twist-bend forming of aeroenginetitanium TC4 wide-chord hollow fan blade withcomplex geometries[J]. Acta Aeronautica etAstronautica Sinica, 2015, 36(6): 2055–2063.

[21] 張定華 , 杜隨更 , 任軍學(xué) , 等 . 航空發(fā)動(dòng)機(jī)鈦合金寬弦空心風(fēng)扇葉片的制造方法 : CN105436839A[P]. 2017–07–28.

ZHANG Dinghua, DU Suigeng, RENJunxue, et al. Manufacturing method of titaniumalloy wide-chord hollow fan blade for aeroengine:CN105436839A [P]. 2017–07–28.

[22] 楊光 , 吳懷遠(yuǎn) , 任宇航 , 等 . 成形方式與方向?qū)?TA15 鈦合金顯微組織及超聲參量的影響 [J]. 稀有金屬材料與工程 , 2021, 50(5):1760–1766.

YANG Guang, WU Huaiyuan, REN Yuhang,et al. Effect of forming method and directionon microstructure and ultrasonic parameters ofTA15 titanium alloy[J]. Rare Metal Materials andEngineering, 2021, 50(5): 1760–1766.

[23]QU F, LIU S, QUAN C, et al.Influence of vibratory stress relief on residualstress and mechanical properties of TA15 titaniumalloy thick plate[J]. Jinshu Rechuli Heat Treatmentof Metals, 2015, 40(7): 180–182.

[24] 李興無 , 沙愛學(xué) , 張旺峰 , 等 . TA15合金及其在飛機(jī)結(jié)構(gòu)中的應(yīng)用前景 [J]. 鈦工業(yè)進(jìn)展 , 2003, 20(S1): 90–94.

LI Xingwu, SHA Aixue, ZHANG Wangfeng,et al. TA15 titanium alloy and its applyingprospects on airframe[J]. Titanium IndustryProgress, 2003, 20(S1): 90–94.

[25] YASMEEN T, SHAO Z T, ZHAO L,et al. Constitutive modeling for the simulation ofthe superplastic forming of TA15 titanium alloy[J].International Journal of Mechanical Sciences,2019, 164: 105178.

[26] MA B, WU X, LI X J. Investigationon the hot formability of TA15 titanium alloysheet[J]. Materials and Design, 2016, 94: 9–16.

[27] KASSNER M E, KOSAKA Y, HALLS. Low-cycle dwell-time fatigue in Ti–6242[J].Metallurgical and Materials Transactions A, 1999,30(9): 2383–2389.

[28] MAO X, ZHAO Y, YANG G.Development situation of the overseas titaniumalloys used for aircraft engine[J]. Rare MetalsLetters, 2007, 10: 21–25.

[29] ZHAO E, SUN S, ZHANG Y. Recentadvances in silicon containing high temperaturetitanium alloys[J]. Journal of Materials Researchand Technology, 2021, 14(3): 3029–3044.

[30]KITASHIMA T, KAWAMURAT. Prediction of oxidation behavior of near – αtitanium alloys[J]. Scripta Materialia, 2016, 124:56–58.

[31] V O P, J A H A Z I M , Y U E S .Recrystallization during thermomechanicalprocessing of IMI834[J]. Metallurgical andMaterials Transactions A, 2008, 39(12): 2965.

[32] GERMAIN L, GEY N, HUMBERT M.Analysis of sharp microtexture heterogeneitiesin a bimodal IMI 834 billet[J]. Acta Materialia,2005, 53(13): 3535–3543.

[33] LEE D H, NAM S W, CHOE S J. Effectof α lamellae width on creep-fatigue behavior innear–α Ti–1100 with lamellar structure[J]. ScriptaMaterialia, 1999, 40(3): 265–270.

[34] LEE D H, NAM S W, CHOE S J .Effect of microstructure and relaxation behavior onthe high temperature low cycle fatigue of near–α–Ti–1100[J]. Materials Science and Engineering: A,2000, 291(1–2): 60–67.

[35] CHENG C, CHEN Z Y, LI H E, etal. Vacuum superplastic deformation behavior ofa near–α titanium alloy TA32 sheet[J]. MaterialsScience and Engineering: A, 2021, 800: 140362.

[36] LI W Y, CHEN Z Y, LIU J R, et al.Rolling texture and its effect on tensile propertyof a near–α titanium alloy Ti60 plate[J]. Journalof Materials Science & Technology, 2019, 35(5):790–798.

[37] YUE K, LIU J R, ZHU S X, et al.Origins of different tensile behaviors induced bycooling rate in a near alpha titanium alloy Ti65[J].Materialia, 2018, 1: 128–138.

[38] LIU Z G, LI P J, XIONG L T, et al.High-temperature tensile deformation behavior andmicrostructure evolution of Ti55 titanium alloy[J].Materials Science and Engineering: A, 2017, 680:259–269.

[39] LI W Y, CHEN Z Y, LIU J R, et al.Effect of texture on anisotropy at 600 ℃ in a near–αtitanium alloy Ti60 plate[J]. Materials Science andEngineering: A, 2017, 688: 322–329.

[40] ZHANG Z X, FAN J K, LI R F, etal. Orientation dependent behavior of tensile-creep deformation of hot rolled Ti65 titaniumalloy sheet[J]. Journal of Materials Science &Technology, 2021, 75: 265–275.

[41] 王晶 . 熱處理對 TB5 板材組織和性能的影響 [C]// 第 13 屆全國鈦及鈦合金學(xué)術(shù)交流會(huì) . 洛陽 , 2008.

WANG Jing. The effect of heat treatmenton microstructure and properties of TB5 sheet[J].The 13rd National Titanium and Titanium AlloyAcademic Exchange Conference. Luoyang,2008.

[42] 張紀(jì)春 , 王永軍 , 白穎 . 大飛機(jī)鈦合金薄壁管道零件冷成形關(guān)鍵技術(shù)研究 [J]. 航空制造技術(shù) , 2013, 56(1/2): 108–111.

ZHANG Jichun, WANG Yongjun, Bai Ying.Study on key technology of cold forming thin-walled duct part of large aircraft with titaniumalloy[J]. Aeronautical Manufacturing Technology,2013, 56(1/2): 108–111.

[43] 孫永娜 , 柳長旭 , 吳國清 . TB5 鈦合金薄板微觀組織與彎曲性能關(guān)系研究 [J].航空制造技術(shù) , 2017, 60(18): 48–52.

SUN Yongna, LIU Changxu, WU Guoqing.Research on relationship between microstructureand bending properties of TB5 sheet[J].Aeronautical Manufacturing Technology, 2017,60(18): 48–52.

[44] 楊冬雨 , 付艷艷 , 惠松驍 , 等 . 高強(qiáng)高韌鈦合金研究與應(yīng)用進(jìn)展 [J]. 稀有金屬 ,2011, 35(4): 575–580.

YANG Dongyu, FU Yanyan, HUI Songxiao,et al. Research and application of high strength andhigh toughness titanium alloys[J]. Chinese Journalof Rare Metals, 2011, 35(4): 575–580.

[45] SUN M, YE W, HUI S. Effects ofsolution temperature on tensile properties andfracture toughness of Ti–62A alloy[J]. ChineseJournal of Rare Metals, 2012, 36(1): 36–41.

[46] LIU R, HUI S X, YE W J, et al.Effects of hot working and heat treatment onproperties of Ti–62A alloy plate[J]. AdvancedMaterials Research, 2012, 567: 112–115.

[47] 呂逸帆 , 雷家峰 , 劉希林 , 等 . 一種適用于載人潛水器用 Ti62A 合金的焊絲及其制備方法 : CN111761258A[P]. 2022–01–28.

Lü Yifan, LEI Jiafeng, LIU Xilin, et al.A welding wire suitable for Ti62A alloy formanned submersible and its preparation method:CN111761258A[P]. 2022–01–28.

[48] 廖強(qiáng) , 謝文龍 , 曲恒磊 , 等 . 熱軋溫度對 TA5–A 鈦合金板材組織及拉伸性能的影響 [J]. 熱加工工藝 , 2012, 41(16): 50–52.

LIAO Qiang, XIE Wenlong, QU Henglei, etal. Effects of hot-rolling temperature on structureand tensile properties of TA5–A titanium alloyplate[J]. Hot Working Technology, 2012, 41(16):50–52.

[49] 張智鑫 , 李瑞鋒 , 王儉 , 等 . 試驗(yàn)溫度對船用 Ti–70 鈦合金板材沖擊韌性的影響[J]. 世界有色金屬 , 2017(8): 1–3.

ZHANG Zhixin, LI Ruifeng, WANG Jian, et al. Effects of test temperature on impact toughnessof Ti–70 Titanium plate[J]. World NonferrousMetals, 2017(8): 1–3.

[50] HUI C. Research and developmentof titanium alloy for shipbuilding in China[J].Materials Review, 2005, 8: 33–35.

[51]鄭超 , 朱秀榮 , 王軍 , 等 . 裝甲鈦合金的研究與應(yīng)用現(xiàn)狀 [J]. 鈦工業(yè)進(jìn)展 , 2020,37(4): 41–48.

ZHENG Chao, ZHU Xiurong, WANG Jun,et al. Review on investigation and application oftitanium armors[J]. Titanium Industry Progress,2020, 37(4): 41–48.

[52]WANG B, LI X, LI Z, et al.Application and prospect of titanium and titaniumalloy in automobile industry[J]. Titanium IndustryProgress, 2006, 6: 54–59.

[53]ZOU Q, LIU Q, WANG H. Theapplication and protection of titanium chemicalequipment[J]. China Titanium Industry, 2016(1):43– 47.

[54] PITCHI C S, PRIYADARSHINIA, SAN G. A review on alloy composition andsynthesis of β – titanium alloys for biomedicalapplications[J]. Materials today: Proceedings,2020, 26: 3297–3304.

[55] 郝芳 , 辛社偉 , 毛友川 , 等 . 鈦合金在裝甲領(lǐng)域的應(yīng)用綜述 [J]. 材料導(dǎo)報(bào) , 2020,34(S1): 293–296, 327.

HAO Fang, XIN Shewei, MAO Youchuan,et al. Review on application of titanium alloy inarmor[J]. Materials Reports, 2020, 34(S1): 293–296, 327.

[56] TAN C, FAN Y, LI X, et al. Effect ofthe multiscale lamellar on mechanical propertiesof TC21 titanium alloy[J]. Rare Metal Materialsand Engineering, 2021, 50(12): 4410 – 4418.

[57]SHI S, FAN K, YANG S, et al.Microstructure evolution and mechanical propertiesof Ti–55511 alloy with equiaxed and lamellarmicrostructures during hot rolling and annealing[J].Rare Metal Materials and Engineering, 2021, 50(12):4296–4306.

[58] WANG K, ZHAO Y, JIA W, et al.Effect of heat treatment on microstructures andproperties of Ti90 alloy[J]. Rare Metal Materialsand Engineering, 2021, 50(2): 552–562.

[59] JIANG H T, DONG P, ZENG S W,et al. Effects of recrystallization on microstructureand texture evolution of cold-rolled Ti–6Al–4Valloy[J]. Journal of Materials Engineering andPerformance, 2016, 25(5): 1931–1938.

[60] CHUN Y B, SEMIATIN S L, HWANGS K. Monte Carlo modeling of microstructureevolution during the static recrystallization ofcold-rolled, commercial-purity titanium[J]. ActaMaterialia, 2006, 54(14): 3673–3689.

[61] WANG D D, FAN Q B, CHENGX W, et al. Texture evolution and slip mode of aTi–5.5Mo–7.2Al–4.5Zr–2.6Sn–2.1Cr dual-phasealloy during cold rolling based on multiscalecrystal plasticity finite element model[J]. Journalof Materials Science & Technology, 2022, 111:76–87.

[62]張智鑫 , 龐洪 , 陳海濤 , 等 . 冷軋加工率和熱處理制度對超塑用 TC4 板材組織和性能的影響 [J]. 航空制造技術(shù) , 2015, 58(17):107–109.

ZHANG Zhixin, PANG Hong, CHENHaitao, et al. Effect of cold rolling reduction andheat treatment on microstructure and propertyof TC4 plate for super-plastic deformation[J].Aeronautical Manufacturing Technology, 2015,58(17): 107–109.

[63]張智鑫 , 劉智宇 , 龐洪 , 等 . TC6鈦合金板材冷軋加工性能的研究 [J]. 中國鈦業(yè) , 2015(3): 20–22.

ZHANG Zhixin, LIU Zhiyu, PANG Hong,et al. Research on property of cold-rolling TC6titanium alloy plates[J]. China Titanium Industry,2015(3): 20–22.

[64] LIU N, WANG Y, HE W. Microstructureand textural evolution during cold rolling andannealing of commercially pure titanium sheet[J].Transactions of Nonferrous Metals Society of China,2018, 28(6): 1123–1131.

[65]GHADERI A, HODGSON P D,BARNETT M R. Microstructure and texturedevelopment in Ti–5Al–5Mo–5V–3Cr alloyduring cold rolling and annealing[J]. Key Engineering Materials, 2013, 551: 210–216.

[66] SANDER B, RAABE D. Textureinhomogeneity in a Ti–Nb–based β–titaniumalloy after warm rolling and recrystallization[J].Materials Science and Engineering: A, 2008,479(1–2): 236–247.

[67] W E I S S I , S E M I AT I N S L .Thermomechanical processing of beta titaniumalloys—An overview[J]. Materials Science andEngineering: A, 1998, 243(1–2): 46–65.

[68] MA Y, DU Z X, CUI X M, et al.Effect of cold rolling process on microstructureand mechanical properties of high strength βtitanium alloy thin sheets[J]. Progress in NaturalScience: Materials International, 2018, 28(6):711–717.

[69] SAITO T, FURUTA T, HWANGJ H, et al. Multifunctional alloys obtained via adislocation-free plastic deformation mechanism[J].Science, 2003, 300(5618): 464–467.

[70] 王紅武 . β21S 鈦合金板材冷軋加工工藝的研究 [J]. 鈦工業(yè)進(jìn)展 , 2001, 18(2): 39–41.

WANG Hongwu. Study on cold rollingprocess of β21S titanium alloy sheet[J]. TitaniumIndustry Progress, 2001, 18(2): 39–41.

[71] 任連保 , 王儉 , 王紅武 , 等 . 一種包覆疊軋鈦合金薄板的疊軋包: CN202105866U[P]. 2012–01–11.

REN Lianbao, WANG Jian, WANGHongwu, et al. A method of pack for titaniumalloy sheet ply rolling: CN202105866U[P].2012–01–11.

[72] 王瑞琴 , 黃先明 , 周玉川 , 等 . 一種TC1 鈦合金薄板的疊軋加工方法 : CN104190715A[P]. 2014–12–10.

WANG Ruiqin, HUANG Xianming, ZHOUYuchuan, et al. A method of titanium alloy sheet forstacking and rolling process: CN104190715A[P].2014–12–10.

[73] 李渤渤 , 陶會(huì)發(fā) , 劉茵琪 , 等 . 一種低強(qiáng)度、易成型焊管用 TA2 冷軋鈦帶的制備方法 : CN108165822A[P]. 2018–06–15.

LI Bobo, TAO Huifa, LIU Yinqi, et al. Amethod for preparing TA2 cold rolled titaniumstrip for low strength and easy forming weldingpipe: CN108165822A[P]. 2018–06–15.

[74]ZHANG Z X, FAN J K, TANGB, et al. Microstructure/texture evolution mapsto optimize hot deformation process of near–α titanium alloy[J]. Progress in Natural Science:Materials International, 2020, 30(1): 86–93.

[75] 申立濤 , 許鵬 , 張亞震 , 等 . 冷連軋升降速過程板形變化及其張力補(bǔ)償技術(shù) [J]. 鋼鐵 , 2021, 56(5): 72–79.

SHEN Litao, XU Peng, ZHANG Yazhen, etal. Strip shape change and its tension compensationtechnology in process of speed increase anddecrease of cold continuous rolling mill[J]. Iron &Steel, 2021, 56(5): 72–79.

[76] 王勇勤 , 嚴(yán)興春 , 田文波 , 等 . 板形控制液壓彎輥系統(tǒng)的仿真 [J]. 鋼鐵研究學(xué)報(bào) , 2007, 19(3): 93–97.

WANG Yongqin, YAN Xingchun, TIANWenbo, et al. Simulation of hydraulic roll bendingsystem for shape control[J]. Journal of Iron andSteel Research, 2007, 19(3): 93–97.

[77] NING F K, LE Q C, JIA Y H, et al.Bauschinger-like effect of AZ31 magnesium alloywide sheet during the straightening process[J].Acta Metallurgica Sinica (English Letters), 2021,34(9): 1255–1264.

[78] 龐洪 , 王紅武 , 高飛 , 等 . 一種鈦及鈦合金板材真空蠕變矯形方法 : CN104841727A[P]. 2015–08–19.

PANG Hong, WANG Hongwu, GAO Fei, etal. A method of vacuum creep process for titaniumand titanium alloy plates shape righting: CN104841727A[P]. 2015–08–19.

[79] ROY S, SUWAS S. Microstructureand texture evolution during sub-transusthermomechanical processing of Ti–6Al–4V–0.1Balloy: Part I. Hot rolling in (α + β) phase field[J].Metallurgical and Materials Transactions A, 2013,44(7): 3303–3321.

[80]ROY S, SUWAS S. Orientationdependent spheroidization response and macro-zone formation during sub β–transus processing ofTi–6Al–4V alloy[J]. Acta Materialia, 2017, 134:283–301.

[81] BACHE M R, COPE M, DAVIESH M, et al. Dwell sensitive fatigue in a nearalpha titanium alloy at ambient temperature[J].International Journal of Fatigue, 1997, 19(93):83–88.

[82] 王紅武 , 王儉 , 任連寶 , 等 . 深沖用TC4 板材組織織構(gòu) [J]. 金屬學(xué)報(bào) , 2002, 38(S1):191–193.

WANG Hongwu, WANG Jian, REN Lianbao, et al. Texture of TC4 sheets used for deep-drawing[J]. Acta Metallurgica Sinica, 2002,38(S1): 191–193.

[83] 張永強(qiáng) , 毛小南 , 潘浩 , 等 . 細(xì)晶TA15 鈦合金板材制備工藝及其超塑性研究 [J].鈦工業(yè)進(jìn)展 , 2018, 35(1): 20–24.

ZHANG Yongqiang, MAO Xiaonan, PANHao, et al. Research on fine grained TA15 titaniumalloy sheet preparation and its superplasticity[J].

Titanium Industry Progress, 2018, 35(1): 20–24.

[84] PERUGU C S, VERMA K K,MADHU H C, et al. Microstructural and textureevolution of hot-rolled TA32 alloy and its effect ontensile properties[J]. JOM, 2021, 73(5): 1428–1439.

通訊作者:樊江昆,副教授,博士,主要從事鈦合金及高溫合金等先進(jìn)金屬結(jié)構(gòu)材料相變晶體學(xué)、強(qiáng)韌化機(jī)理與組織性能調(diào)控、變形微觀機(jī)理等方面的研究工作。

相關(guān)鏈接

在線客服
客服電話

全國免費(fèi)服務(wù)熱線
0917 - 3125849
掃一掃

bjjwtai.com
巨偉鈦業(yè)手機(jī)網(wǎng)

返回頂部
主站蜘蛛池模板: 成人黄色在线视频 | 日韩成人影院在线观看 | 日韩视频精品在线 | 人人爽在线观看 | 欧美精品在线视频 | 青青草亚洲 | 99国内精品久久久久久久 | 成人精品一区二区三区中文字幕 | 日本xxx性 | 久久这里只有精品8 | 亚洲精品乱码久久久久久按摩观 | 精品中文字幕在线观看 | 精品96久久久久久中文字幕无 | 国产精品99久久久久久久久久久久 | 黄色网页大全 | 国产成人av在线 | 免费久久网站 | 玖草av| 天天插天天操天天干 | 欧美涩涩网 | 91精品久久久久久久久中文字幕 | 男女激情网址 | 亚洲免费视频网 | 亚洲码欧美码一区二区三区 | 日韩一区二区精品 | 狠狠ri| 亚洲最大免费视频 | 骚黄视频 | 在线成人| 一区二区中文字幕 | 91国偷自产一区二区三区亲奶 | 日本美女一区二区三区 | 日韩一二三区 | 91亚洲精 | 成人在线视频网站 | 日韩专区视频 | 久久久久国产精品一区二区三区 | 999视频在线免费观看 | 亚洲精品福利 | 欧美激情亚洲 | 91午夜视频 | 91九色网站| 天天射天天干 | 欧美久久成人 | 91.成人天堂一区 | 久久99国产精品 | 99久久99久久精品 | 国产欧美网址 | 免费黄色小视频 | 久久精品欧美一区二区三区麻豆 | 91电影在线观看 | 久久国产欧美日韩精品 | 天天干天天谢 | 国产精选一区二区三区 | 玖玖玖精品视频 | 国产96精品久久久 | 午夜成人在线视频 | 亚洲三级在线观看 | 欧美日韩激情在线 | 国产精品久久久久久久久免费桃花 | 精品国产仑片一区二区三区 | 亚洲精品第一页 | 日韩在线 | av午夜电影| 精品久久久久久亚洲精品 | 国产一区二区三区久久久 | 麻豆一区二区三区 | 国产一区二区三区在线免费观看 | 永久精品 | av一区在线观看 | 亚洲成人免费在线观看 | 国产精品原创av | 日本a在线| 国产成人一区二区三区 | 亚洲不卡| 国产精品国产三级国产aⅴ 羞羞的视频在线 | 在线精品一区二区 | 日日夜夜国产 | 欧美国产日韩在线 | 欧美日韩精品一区二区三区蜜桃 | 成人网av | av伊人网 | 国产精品久久精品久久 | 欧美亚洲视频 | 成人精品在线视频 | 国产精品久久久久久吹潮 | 久久这里只有精品首页 | 久久成 | 欧美一区永久视频免费观看 | 中文字幕天天操 | а天堂中文最新一区二区三区 | 中文字幕二区 | 男女av在线 | 久精品视频 | 午夜精品久久久久久久白皮肤 | 久草成人| 91成人在线视频 | 在线播放一区二区三区 | 久久精品影视 | 亚洲成年| 亚洲福利视频在线 | 狠狠操夜夜爱 | 少妇av片 | 亚洲免费视频在线观看 | 亚洲天堂成人 | 日韩国产一区 | 中文字幕在线第一页 | 精品网站999www | 国内久久精品 | 国产综合精品一区二区三区 | 日日操操| 国产一区二区三区四区在线观看 | 国产精品九九九 | 午夜精品久久久久久久久久久久久 | 国产欧美精品一区二区三区四区 | 中文字幕亚洲视频 | 久久免费在线观看 | 日本免费黄色 | 正在播放国产精品 | 国产精品视频一区二区三区 | 黄网在线 | 久久成人免费观看 | 亚洲v日韩v综合v精品v | 精品视频一区二区三区四区 | 成人免费在线视频 | 岛国精品 | 91免费电影 | 国产精品久久久久久久久久新婚 | 欧美日韩一区二区在线 | 亚洲欧美精品一区二区三区 | 国产亚洲欧美一区二区三区 | 中国大陆高清aⅴ毛片 | 日韩中文字幕一区二区 | 91秦先生艺校小琴 | 久久精品99国产精品亚洲最刺激 | 久久成人国产视频 | 日韩欧美在线观看视频 | 精品久久精品 | 国产精品女同一区二区久久夜 | 久久精品免费观看 | 成人日韩在线观看 | 涩涩视频观看 | 午夜老湿影院 | 成人福利在线 | 最近韩国日本免费观看mv免费版 | 亚洲深深色噜噜狠狠网站 | 久久久.com | 亚洲成人一区 | 日韩精品专区在线影院重磅 | 拍拍无遮挡人做人爱视频免费观看 | 少妇色欲网 | 国产成人网 | 日韩精品av一区二区三区 | 成人免费在线 | 日韩欧美在线一区 | 中文字幕在线观看精品视频 | 黄色一级片看看 | 精品国产鲁一鲁一区二区三区 | 91亚洲国产精品 | 99re在线精品 | 日韩欧美综合 | 在线二区 | 91精品国产乱码久久久久久久久 | 精品国产一区二区三区在线观看 | 色综合成人 | 国产在线高清视频 | 亚洲国内精品 | 亚洲视频一区在线播放 | 综合久久99 | www.日韩av.com| 久久手机在线视频 | 亚洲精品二区 | 日日干天天干 | 欧美日韩中文字幕 | 日本一区二区三区四区不卡视频 | 欧美xxxⅹ性欧美大片 | 亚洲精品中文视频 | 久久久久久国产精品 | 最新中文字幕在线 | 91高清在线 | 国产精品久久久久久久久久久久久 | 国产欧美综合一区二区三区 | 欧美激情 | 91精品在线播放 | 亚洲视频三区 | 国产高清免费视频 | 91视频免费看| 色综合国产 | 欧美精品成人 | 日韩午夜在线 | 在线你懂得 | 日韩成人在线网 | 日韩小视频 | 国产精品久久久久久久久免费软件 | 久久综合狠狠综合久久 | 成人精品一区二区三区中文字幕 | 99草在线视频 | 亚洲综合在线一区 | 黄网站在线播放 | www.99久| 狠狠爱天天干 | 性色av网 | 欧美日韩视频在线 | 国产农村妇女精品久久 | 91在线免费看 | 伊人久麻豆社区 | 国产一区在线观看视频 | 国产福利一区二区三区四区 | www.国产.com| 国产日韩精品视频 | 亚洲黄色一区二区 | 热re99久久精品国99热线看 | 国产精品视频一区二区三区四蜜臂 | 欧美日韩电影一区 | 欧美精品久 | 国产免费拔擦拔擦8x高清在线人 | 香蕉大人久久国产成人av | 操操日 | 国产一区二区精品丝袜 | 欧美日韩免费一区二区三区 | 三级成人在线 | 中文字幕一区二区三区四区不卡 | 亚洲在线免费观看 | 亚洲色图综合 | 色婷婷综合久久久中文字幕 | 一区二区三区自拍 | 国产一区二区视频精品 | 一区二区在线看 | 一区中文字幕 | 日本精品一区二区三区在线观看视频 | 国产午夜精品一区二区三区视频 | 精品国产仑片一区二区三区 | 欧美精品一区二区三区四区 | 久久精品亚洲 | 日本成人黄色网址 | 欧美国产综合 | 999免费视频 | 在线视频 91| www国产亚洲精品久久网站 | 国产日韩视频 | 伊人免费视频 | 国产精品毛片 | 欧美一区免费 | 久久人体视频 | 中文一二区 | 九九99九九精彩46 | 亚洲精品一区二区三区 | 99视频在线 | 午夜免费观看网站 | 亚洲精选一区 | 精品国产精品国产偷麻豆 | 亚洲精品wwww | 成人日韩 | 999视频 | 久久久精品综合 | 日本小视频网站 | 欧美一区二区三区在线观看视频 | 国产区一区 | 国产精品美女视频免费观看软件 | 国产成人精品一区二区三区视频 | 中文字幕在线免费视频 | 日韩欧美视频一区 | 国产一区二区精品在线观看 | 日日摸夜夜添夜夜添高潮视频 | 福利视频二区 | 国产一级免费视频 | 综合网亚洲 | 欧美一区二区三区xxxx监狱 | 成人av在线看 | 视频一区久久 | 亚洲不卡视频 | 精品国产91亚洲一区二区三区www | 亚洲a网| av大片| 自拍偷拍欧美 | 亚洲国产精品久久久久 | 日本在线观看一区二区 | 久久久久综合 | 日韩精品一区二区三区老鸭窝 | 国产精品丝袜视频 | 久久综合九色综合欧美狠狠 | 亚洲性爰 | 日本高清中文字幕 | 免费亚洲成人 | 在线精品一区 | 国产精品免费看 | 欧美电影一区 | 亚洲伊人久久综合 | 97碰碰碰| 国产视频久久久久久久 | 欧美精品三区 | 玖玖色资源 | 亚洲伊人久久综合 | 欧美一级片在线观看 | 亚洲福利国产 | 在线观看国产视频 | av一区二区三区在线观看 | 欧美精品第十页 | 天天干干 | 国产自在现线2019 | 视频一区二区三区中文字幕 | 日韩精品在线免费 | 精品一区二区久久久久久久网站 | 亚洲成av人片在线观看 | 中文字幕免费看 | 欧美亚洲国产一区 | 久久精品亚洲精品国产欧美 | 欧美色综合 | 精品国产黄a∨片高清在线 日韩一区二 | 一级片av| 免费观看av毛片 | 99久久夜色精品国产网站 | 国产视频一区二区三区四区 | 久久密 | 在线视频中文字幕 | 天天干女人网 | 日韩一二三区视频 | 国产成人精品亚洲777人妖 | 欧美日韩不卡在线 | 在线色网站 | 欧美高潮 | 亚洲国产视频精品 | 久久伊人久久 | 91精品国产综合久久国产大片 | 欧美在线视频一区二区 | 国产欧美精品区一区二区三区 | 欧美a√| 精品国产乱码久久久久久88av | 国产不卡视频 | 国产精品国产精品国产专区不片 | 精品毛片| 91在线精品秘密一区二区 | 国产高清在线精品一区 | 久久国 | 免费在线国产 | 91成人短视频在线观看 | 91精品综合久久久久久五月天 | 亚洲午夜精品视频 | 色九九| 欧美日韩国产高清视频 | 日韩精品免费在线观看 | 亚洲精品福利网站 | 黄色大片视频 | 国产综合精品视频 | 欧美成人激情视频 | 日本在线一区二区 | 夜夜操天天干 | 国产精品www | 丁香婷婷综合激情五月色 | 国模一区二区三区 | 国产精品久久国产精麻豆99网站 | 国产精品久久久久久久久久三级 | 男女羞羞视频免费观看 | 欧美久久久久久久久久伊人 | 国产成人精品午夜 | 国产亚洲女人久久久久毛片 | 91免费观看视频 | 色综合激情 | 在线区 | 草樱av | 欧美日韩成人在线视频 | 国产精品视频不卡 | 男女免费在线观看视频 | 毛片在线视频 | 亚洲成人av在线 | 亚洲成人综合网站 | 亚洲国产精品一区二区www | 国产1页 | 色接久久| 久久一区二区三区四区 | 欧美精品二区中文乱码字幕高清 | 久久综合热 | 国产精品1区2区 | 欧美男人的天堂 | 欧美日本韩国一区二区三区 | 亚洲 欧美 另类 综合 偷拍 | 精品国产污网站污在线观看15 | 国产欧美精品区一区二区三区 | 国产精品视频99 | 国产精品久久久久久久久久 | 神马香蕉久久 | 欧美日韩一区二区三区在线观看 | 天堂在线一区二区 | 欧美视频在线播放 | 精品国产乱码久久久久久影片 | 国产福利片在线观看 | 欧美视频在线播放 | 成人一区av | 伊人免费观看视频 | 躁躁躁日躁夜夜躁 | 亚洲网站在线 | 欧美二区三区 | av网站免费观看 | 91麻豆精品国产91久久久久久 | 毛片在线免费播放 | 日批免费视频 | 国产 在线 | 日韩 | 久久国产精品视频 | 黄色片免费看 | 中文字幕在线精品 | 青草福利 | 亚洲欧洲一区二区 | 中文字幕一区二区三区精彩视频 | 伊人影院久久 | 色综合成人 | 亚洲精品乱码久久久久久花季 | 国产婷婷在线观看 | 一级毛片中国 | 久久久久久久久久久久91 | 国产精品网站在线看 | 欧美一级一区 | 狠狠躁夜夜躁人人爽天天高潮 | 成人h动漫免费观看网站 | 99国产精品99久久久久久 | 美女又黄又免费 | 色欧美片视频在线观看 | 欧美激情一区二区三区四区 | 国产成人激情 | 亚洲精品乱码久久久久久麻豆不卡 | 国产美女网站视频 | 久热热热| 亚洲精品乱码8久久久久久日本 | 国产日韩欧美精品一区二区三区 | 午夜不卡一区二区 | 一色视频| 国产浪潮av色综合久久超碰 | 婷婷国产精品 | 黄色一级视屏 | 国产91亚洲精品久久久 | 精品国产一区二区三区成人影院 | 色爽女人免费 | 福利精品在线观看 | 国产日韩一区二区三区 | av色伊人久久综合一区二区 | 色综合一区二区三区 | 噜噜噜噜狠狠狠7777视频 | 狠狠影院 | 久久久国产精品视频 | 国产福利在线观看 | 四虎影院免费看 | a级毛片久久 | 四虎免费在线播放 | 国产在线精品一区二区三区 | 可以在线看的黄色网址 | 玖玖综合网 | 免费三片在线观看网站 | 午夜免费视频 | 91精品国产综合久久福利软件 | 狠狠色狠狠色合久久伊人 | 久草精品视频在线播放 | 久久久精品欧美 | 国产精品久久久久久久午夜片 | 日本高清无卡码一区二区久久 | 成人av教育 | 亚洲精品一区二区三区麻豆 | 久久一区二区三区四区 | 精品国产91乱码一区二区三区 | 精品国偷自产在线 | 久久机热 | 日日摸日日碰夜夜爽亚洲精品蜜乳 | 五月婷婷狠狠爱 | 亚洲美女在线视频 | 亚洲成人毛片 | 亚洲无吗天堂 | 午夜免费一区二区播放 | 国产色在线观看 | 精品国产乱码久久久久久蜜柚 | 国产精品毛片无码 | 亚洲国产成人久久综合一区,久久久国产99 | 91国内外精品自在线播放 | 伊人精品在线 | 日日干天天操 | 视频一区二区三区中文字幕 | 久久国| av在线一区二区三区 | 欧美成人免费观看 | 国产中文一区 | 国产 日韩 欧美 在线 | 精品视频久久久久 | 亚洲欧美第一页 | 99日韩| 日本精品免费 | 日日鲁鲁 | 一区二区三区中文字幕 | 日韩在线中文字幕视频 | 艹艹网 | 天天干一干 | 日韩精品小视频 | 久久在线 | 一级视频在线观看 | a级片网站| 欧美第一视频 | 一级在线观看视频 | 日本理论片好看理论片 | 成人免费视频网站在线看 | 国产日韩亚洲欧美 | 久久久美女 | h视频免费观看 | 7777久久| 中文av在线免费观看 | 久在线视频 | 精品国产一区二区三区成人影院 | 欧美亚洲国产一区二区三区 | 国产精品久久精品 | 免费一级在线观看 | 国产高清中文字幕 | 欧美成人区| 国产美女网站视频 | 国产精品一区久久久久 | 高清av网站 | 欧美 日韩 | 日本高清中文字幕 | 毛片免费看 | 中文字幕高清av | 欧美日韩综合视频 | 欧美一级久久久 | 色女人av | 国产高清美女一级a毛片久久 | 欧美日韩一区在线观看 | 日韩欧美第一页 | 日韩www视频 | 久久av网 | 精品视频一区二区在线 | 成人在线网址 | 日本在线观看视频网站 | 欧美日韩一级视频 | 毛片综合 | 国产高清一区 | 成人av免费观看 | 91.成人天堂一区 | 久久九九视频 | 久久亚洲国产精品 | 毛片在线视频 | 爱色av | 日韩网站免费观看 | 久久这里只有精品23 | 99国内精品久久久久久久 | a免费在线 | 久久久久久av | 黄网站色大毛片 | 韩日视频在线观看 | 99精品欧美一区二区三区综合在线 | 欧美一级免费观看 | yiren22综合网成人 | 久久久久久久久久久精 | 久久成人精品视频 | 精品国产一区二区三区成人影院 | 欧美一区二区黄色片 | 免费一区二区 | 亚洲精品国产偷自在线观看 | 欧美黑人做爰xxxⅹ 国产精品一区二区视频 | 成人在线一区二区 | 亚洲免费人成在线视频观看 | 国产高清在线精品一区二区三区 | xxxx性欧美| 在线观看国产wwwa级羞羞视频 | 91电影院 | 国产成人精品在线 | 精品日韩一区二区 | 男人天堂视频网 | 亚洲视频在线免费观看 | 欧美精品一区二区三区四区五区 | 中文字幕在线精品 | 久久久久久亚洲 | 午夜操操| 亚洲热妇| 国产亚洲二区 | 91婷婷射| av网站观看 | 美女午夜影院 | 亚洲高清在线观看 | 成人一区二区在线 | 天天操综合网 | 国产成人毛片 | 成人免费淫片aa视频免费 | 91精品久久久久久久久久小网站 | 99re视频精品 | 特黄特黄aaaa级毛片免费看 | av毛片在线免费看 | 久久九| 51ⅴ精品国产91久久久久久 | 日韩一级黄色大片 | 在线观看欧美一区二区三区 | 国产一级毛片国语一级 | 久久福利| 九一视频在线观看 | 久久久久久91香蕉国产 | 中文字幕亚洲一区二区va在线 | 91婷婷射| 一级一片免费看 | 神马久久久久久久久久 | 一级毛片中国 | 99热首页| 久国产精品视频 | 久久99国产精品 | 在线中文字幕av | 亚洲国产日韩欧美 | 亚洲成人av在线 | 福利三区| 久久久91精品国产一区二区 | 成人一区视频 | 久久免费视频3 | 成人免费在线视频播放 | 亚洲国产婷婷香蕉久久久久久99 | 麻豆av一区| 免费国产视频在线观看 | 久久91精品久久久久久9鸭 | 久草久 | 一区二区不卡视频在线观看 | 免费黄色看片 | 日韩第一区 | 亚洲精品一区二区三区樱花 | 91成人免费看片 | 久久精品一级 | 成人精品一区二区 |